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An Efficient Approach to Modeling of Quasi-

Planar Structures Using the Formulation of

Power Conservation in Spectral Domain
Tongqing Wang and Ke Wu, Senior A4ernber, IEEE

Abstract—An enhanced spectral domain approach (SDA) is de-
veloped for analysis of complex quasi-planar transmission lines.
The method is based on a combination of spectral domain formu-
lation and power conservation theorem. The relationship between
electric and magnetic fields is established inside dielectric layers

by using the conventional SDA while characteristic equation
related to interface conditions is derived throngh the power
conservation theorem. Maintaining the inherent advantages of

the SDA, this technique is able to easily handle more complex

quasi-planar structures. Generalized power formulation is also

presented to calculate characteristic impedance. Convergence be-

havior is discussed considering the nature of power conservation.
Various finlines with finite thickness of conductors are analyzed
to demonstrate its applications.

I. INTRODUCTION

W ITH ever increasing device density and operating fre-

quency in monolithic and hybrid integrated circuits,

electromagnetic modeling of various quasi-planar transmission

lines is mandatory in accurately predicting circuit performance

and efficiently compressing design cycle. Many analysis meth-

ods usually present a compromise between accuracy and effi-

ciency of numerical calculations, which are no longer suitable

for growing demand of accurate analysis over wide frequency

spectrum up to millimeter-wave range. The development of

generalized and rigorous field-theoretical approaches, which

are able to consider the effect of finite thickness of metal as

well as grooves/pedestals, is therefore pertinent for successful

applications. So far, a number of hybrid-mode techniques

have been presented for analysis of a class of complex quasi-

planar structures, mode-matching method [1], complex power

conservation technique [2], transverse resonance technique [3],

[4], method of lines [5], modified SDA [6], [7], to name a

few examples. It has been recognized that the SDA is the

most popular technique today. This is mainly driven by two

facts. One is that the Green’s function and field quantities are

handled in the spectral domain through efficient and simple

algebraic algorithm. The other is that Galerkin’s technique

makes it possible to obtain accurate results with very low

determinant order of the characteristic equation. This is usually

done through an appropriate choice of basis functions which
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satisfy the edge singularity of currents on strips or of fields in

slots. Its early applications and theoretical framework were

reviewed in [8]. Recently, much effort has been made to

extend the SDA to modeling of a class of novel and com-

plicated quasi-planar structures. The mixed spectral domain

approach was presented in [9], [10] for characterization of

suspended planar transmission lines with pedestals and vari-

ous dielectric-loaded ridge waveguides. The CPW electrodes

including conductor thickness have been analyzed in [11] for

the Ti:LiNb03 electrooptic modulator through an extended

spectral-domain approach based on integral equations. This

approach has been also used to determine the characteristics

of planar transmission lines with finite metallization thickness

and lossy substrates containing magnetized ferrites in [12],

[13]. However, these modified versions of the SDA may

suffer from somehow tedious formulations as the complexity

of structures increases. The spectral domain and equivalent

boundary method [14] was proposed to model generalized

coplanar transmission lines embedded in a bianisotropic mul-

tilayered medium. Nevertheless, this approach with simple

analytical process ignored the effect of finite thickness of

conductors.

In this work, a novel enhanced spectral domain approach

is proposed to analyze propagation characteristics of a class

of complex quasi-planar transmission lines. This technique

takes into account the effect of various structural parameters

such as finite thickness of conductors and grooves/pedestals

while maintaining the advantageous nature of the SDA. It

is essentially achieved by an appropriate combination of the

conventional SDA formulation with the power conservation

theorem. In the spectral domain, tangential magnetic field at

boundary apertures of each subregion (homogeneous dielectric

layer) can be expressed in terms of its electric counterpart

through a characteristic matrix. In the space domain, the

bounday conditions at the interfaces are satisfied by imposing

power conservation theorem. Compared to the conventional

and other modified SDA, the proposed technique is more

efficient in view of analytical effort and numerical accuracy.

This is done by avoiding usually lengthy derivation of the

Green’s function matrix for complex structures. In addition,

this technique features an independent choice of the truncated

spectral term in each subregion. The numerical efficiency is,

therefore, highly enhanced in terms of the CPU time and

memory space. This is in particular important in the analysis

of structures containing a large ratio of the lateral width
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among adjacent subregions. A generalized power formulation

is derived for the impedance calculation. Results for finlines

with split-housing and finite thickness of metal strips are

presented to demonstrate performance and usefulness of the

proposed technique.

II. THEORY

A. Characteristic Equation

As shown in Fig. 1(a), a generalized planar structure is

composed of an arbitrary number of strips/fins deposited on

different interfaces of a multilayer dielectric substrate. The

consideration of finite metal thickness as well as housing

grooves or box frames is important for millimeter-wave appli-

cations [2], [15]. Exact electromagnetic characteristics of such

a structure can be symbolically described by the following

space-domain integral equation in the frequency domain

(1)

where ~ stands for the dyadic Green’s function, and l?t, ~t are

the tangential components of electric fields and current density

at interfaces involving strips/fins. In the spectral domain,

the convolutional equation (1) is transformed into a simple

algebraic equation, such that

(2)

The tilde over these ‘quantities indicates the spectral-domain

transform. Obviously, the key to apply this approach is to.—
obtain the spectral domain Green’s function ~ for a specific

structure. So far, a variety of modification and improvement

related to the SDA for analysis of planar structures are

mainly on derivation of the Green’s function. With regard

to complex multilayer structures considering finite thickness

of metal, grooves and pedestals, the analytical process gets

much more involved and may become very difficult as the

number of subregions including dielectrics, conductors and

grooves/pedestals increases. To solve this bottleneck problem,

a novel enhanced SDA is introduced for generalized planar

structures. For a concise demonstration of its principle, perfect

conductors and isotropic/lossless dielectrics are assumed.

The whole structure is divided into a number of rectan-

gular homogeneous subregions which are interconnected to

each other and bounded by lateral conducting walls. The

electromagnetic fields in the ith subregion in Fig. 1(b) can

be expanded in the spectral domain

where

with
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Fig. 1. (a) Cross section of a generalized planar transmission line, (b) any
subregion of (a), and (c) any interface of (a).

Substituting (3) into Maxwell’s curl equations yields

In this matrix equation, ~ is a column vector consisting of

electric and magnetic fields for the nth spectral component.

Using a coordinate transform (rotation) similar to [6], a

decoupled equation of the y-directed transverse TE and TM
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fields is obtained
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Invoking Parseval theorem, (10) is transformed into the

spectral domain such that

1
+m

-X )

~; . ~.- ~

ak E; . H;’ ~
n..-a

=j:n~m (g::$)z (11)
n

Substituting (7) and (8) into (1 1), a set of linear homo-

geneous equations is derived. Propagation constant ~ can

be obtained simply through the application of Galerkin’s

technique. In numerical calculations, the infinite sumof(11) in
with -y2 = az+t!?z-wz. e . p.. Note that the relationship

between the original and transformed field components is

characterized by the coordinate transform. Transmission line

solution of (6) leads to two matrix equations which relate

aperture fields to each other at lower and upper boundaries,

such that

and

(7)

(8)

The superscripts (–) and (+) denote the interfaces at y =

+0 and y = hi – O, respectively. Naturally, the tangential

components of electric field at the top and bottom metallic

ground planes of the shielding box are zero.

In the space domain, the tangential electric and magnetic

fields should satisfy the remaining boundary and continuity

conditions at the interfaces as illustrated in Fig. 1(c). In view

of the interface geometry, these conditions can separately be

stated in two different parts

($’)’=$(g)’ ‘napefiures

(S;)k=g(j+)’‘conductors ,9)

in which the subscript “t” refers to the x-z plane, and “k” is the

notation of the region connected to an I- furcated waveguide

j~nction.+On the basis of the complementary property between

Et and Jt, the power conservation in the transverse direction

should hold, which is determined by the following equation:

the spectral domain is truncated to a finite number. The spectral

terms of both sides in (11) may be chosen independently as

long as the power conservation is guaranteed. As will be shown

in next section, smaller number of spectral terms in subregion

with small lateral widths is required to achieve accurate results.

This process greatly enhances the numerical efficiency in terms

of the CPU time and memory space.

B. Characteristic Impedance

The characteristic impedance is a crucial parameter in

computer-aided design of passive and active circuits. In the

following, various finlines are considered as examples of

analysis. Note that there is no unique definition of impedance

in the non-TEM structures in which path integrals of modal

fields are arbitrary. On the basis of practical consideration,

the voltage-power definition seems to be more appropriate

for slot-like structures. Considering the finite thickness of

conductors, the two different slot voltages (VA and VB ) may

be obtained which depend on the upper and lower boundary

apertures (A and B integral paths in Fig. 1(b), for example).

As expected at higher frequencies, the difference between

two voltages will be more visible as the thickness increases.

Therefore, the average voltage may be defined such that

VO = (l/hi) . fok’ (fU Ez . d%) . dy. This can, in practice,

be simplified by assuming a linear variation of V along the

y-direction. As a result, V. is equal to (VA + VB )/2.

The total power P is determined by adding up contributions

Pi from all partitioned subregions. In the spectral domain, an

explicit formulation of Pi can be derived in terms of the field

components in the u-v coordinate system

where

P. = ([E;12 + IE;12) ‘h(27h) – 27h
47. sh2 (~h)

+ E; . E: ‘_fh “ [1 – sh(?h)]
sh(~h) . th(~h)

P~ = (IE;12 + IE:12) . ‘h(27h) + 27h
47. sh2(yh)

–E; .Ef.
~h [1+ sh(~h)]

“ sh(yh) . th(~h)
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I a2 I
Fig. 2. Structure and dimensions of the asymmetrical finline.

(13)

In these equations, E~~– are known field quantities defined

in the ith subregion, which are directly related to the original

fields in the Z-Z coordinate system through a simple rotation

[6]. Obviously, a simple and easy-to-handle formulation is

proposed for power calculation that is usually lengthy. This

is in particular meaningful in the case of complex multilayer

structures considering finite thickness of metals, supporting

grooves and pedestals.

C. Numerical Convergence

Prior to showing examples of this new algorithm, it is useful

to examine inherent behavior of numerical convergence. The

Galerkin’s technique requires that unknown tangential electric

fields at boundary apertures of the ith subregion be expanded

in terms of a complete set of basis functions such that

/+m \i

(3=[:;::;] ’14)
\s=l /

where rl~ and CSare the weighted coefficients to be determined.

It is known that a good convergence towards exact results

can only be achieved by choosing appropriate basis func-

tions which correctly describe the field singularity at relevant

conductor edges. Due to the difference of convergence rate

between the expanded basis functions and their Fourier series,

the basis functions satisfying the edge conditions should be

considered to yield efficient calculation with a low order

of matrix equation. In this work, a set of sinusoidal basis
functions modified by an edge condition term [16] is used

in the analysis. The Fourier transform of the basis functions

for the symmetrical case, to name an example, is given by

f,= (-1)”-’ y [Jo (a ; + (q - l)T)

+ J, (a; - (q- I)T)]

TABLE I
COMPARISONOF CALCULATED AND MEASURED FREQUENCY-DEPENDENTRESULTS

FOR GUIDED WAVELENGTH OF THE ASYMMETRICAL FINIJNE. STRUCTURAL

PARAMETERS: w = 1.25 mm, d = 0.254 mm, e, = 9.9, a1 = 4.42.

mm, az = 6.42 mm, t = O mm, hl = 5.41 mm, hZ = 5.16mm

Ag calculated
Freg. (GHz) Ag measured

[15] [9] This work

17.6 12.50 12.42 12.37 12.37

18.0 12.09 12.07 12.02 12.02

18.4 11.75 11.73 11.68 11.68

18.8 11.46 11.42 11.37 11.37

19.2 11.18 11.17 11.07 11.07

19.6 10.94 10.83 10.78 10.78

20.0 10.62 10.56 10.51 10.51

j. = (_~)s-1 3+

[(
Jo’ a;+s7r

)

- J+;+] (15)

with Jo being the zero-order Bessel function of the first kind.

The index n denoting the spectral terms is ignored in (15) for

simplicity. The choice of the limiting spectral term for the

basis functions mainly depends on the convergence natur~ of

;q. It is easily found that the asymptotic behavior Of .fq iS
in accordance with a–05 as n ~ CO. This suggests that the

relative convergence criterion such that Nk /lVi = C. a~ /a~ as

already discussed in [15] should be fulfilled for any adjoining

subregions in which Nk and Ni are the limiting spectral

terms for the basis functions defined in the subregions a~

and a~, respectively. The coefficient C is then determined

by the relative field intensity regarding the relevant adjoining

subregions, thereby depending on the structural parameters as

well as the spectral terms. The value of C falls usually into the

range of 0.2–5.0. C is larger than 1 as a~ /u; is smaller than

1, for example. In general, the convergence behavior of the

propagation constant and characteristic impedance is different

with respect to the spectral terms for a given number of the

basis functions. This will be discussed subsequently.

III. NUMERICAL EXAMPLES

In the following, asymmetrical finlines are analyzed as

examples to demonstrate performance and applications of the

proposed approach. The basis functions used throughout the

paper are truncated at q = 3 and s = ;!, which turn out to be

sufficient. To begin with, frequency-dependent characteristics

of the finline depicted in Fig. 2 are calculated and shown in

Table I. Our results are in excellent agreement with [91, [151,

thereby validating the proposed approach. Fig. 3 shows dis-

persion curves and characteristic impedance of the dominant

mode for a bilateral finline with three different thickness of

lines. The results for the zero thickness agree well with [16].

The computer program is implemented in a PC486 with 50

MHz clock speed. The CPU time is about 2 seconds per

frequency sample.

The effect of the modal voltages (VA, lb, VO) defined at dif-

ferent position across the slot on the characteristic impedance

is illustrated in Fig. 4. The results indicate that the relative

deviation of characteristic impedance increases linearly with

the thickness of conductors. As expected, such an effect is
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Fig. 3. Dispersion
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Fig. 4. Relative deviation of the characteristic impedance as a function of
the metallization thickness for different definition of voltage in terms of field
path integral in the finline (see Fig. 2). w = 0.2 mm, d = 0.254 mm, S7 =

3.75, aI = 3.556 mm, hl = hz + t = 3.431 mm.

more pronounced at higher frequencies. Obviously, the differ-

ence of modal voltages is attributed to the integral path over

different intensity of electric field across the slot with finite

thickness. On the other hand, the difference in convergence

behavior between the propagation constant and characteristic

impedance is exhibited in Fig. 5 for the asymmetrical finline

(see Fig. 2). The number of spectral terms in subregions other

than “t”is set to be 600, while the reference values of ,/30and

20 is obtained as n2 = 600. It is observed that the convergence

rate of Do is more rapid as a function of the spectral term

than that of 2.. This indicates that power spectrum are widely
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Fig. 5. Convergence behavior of the propagation constant and characteristic
impedance versus the limiting number of spectral terms nZ in Fig, 2 with
w = 0.4 mm, d = 0.254 mm, CT = 3.75, al = 3.556 mm, az =7.112 mm,
t = 0.1 mm, hl = hZ +t = 3.431 mm, f = 35 GHz.

spread over a large range of terms. The slow convergence of

power calculation compared to the dispersion analysis may

be explained by involving the “double” field singularity such

as Ez x IIv. Nevertheless, Fig. 5 suggests that sufficiently

accurate results are obtained for the given structure as nz

exceeds 40.

Fig. 6 presents dispersion characteristics including the first

higher-order mode and characteristic impedance by consid-

ering the effect of finite metallization thickness, It is shown

that the influence of the finite thickness is significant on the

characteristic impedance over the frequency band of interest.
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Fig. 6. Dispersion characteristics for different thickness of metallization of

the asymmetrical tinline (see Fig. 2) with w = 0.4 mm, d = 0.254 mm, Sr =

3.75, aI = 3.556 mm, az = 7.112 mm, hI = /rz + t= 3.431 mm (HM

refers to the first higher-order mode). (a) Normalized propagation constant.

(b) Characteristic impedance.

Increasing the metallization thickness decreases the propaga-

tion constant and characteristic impedance of the dominant

mode. However, the cutoff frequency of the first higher-

order mode in the case of t = 100 pm moves slightly

upwards compared to the case of t = 50 pm. This may

stem from an opposite field perturbation in y-direction by the

separation of housing and concerned metallization thickness.

The dispersion curves and characteristic impedance are plotted

in Fig. 7 for different housing separation (or contrast of the

shielding). In this case, the results considering the effect of

finite thickness display similar dispersion characteristics as in

[15] for the situation of vanishing thickness. The increase in

the housing separation pulls downwards the cutoff frequency

of the first higher-order mode for the given structure. Shown

in Fig. 8 are the dispersion and characteristic impedance

of the even- and odd-modes against different slot widths

for a coupled asymmetrical finline with finite thickness. Of

course, In contrast to the odd-mode, nearly dispersionless

characteristics are observed for the even-mode (quasi-TEM

mode) over the frequency of interest.
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Fig. 7. Frequency-dependent characteristics for different dimension ratio

az /al described in the asymmetrical finline (see IFlg. 2) with w = 0.2 mm,
d =0.254 mm, e, = 3.75, al = 3.556 mm, t = 0.05 mm, hl = h2 + t =

3.431 mm. (HM refers to the first higher-order mode). (a) Normalized

propagation constant. (b) Characteristic impedance.

IV. CONCLUSION

A novel strategy of using the spectral-domain approach

called the enhanced SDA is proposed for accurate theoretical

characterization of generalized planar multilayer and multicon-

ductor structures. The approach is formulated by combining

the conventional SDA in homogeneous zones and the power

conservation theorem at interfaces of different zones. The

principal features of the proposed approach are to simplify

the derivation of Green’s function and extend the inherent ad-

vantages of the existing SDA into handling practical complex

structures considering finite metallization thickness, housing

grooves/separation, and pedestals. The algorithm is easily

implemented on a personal computer. A unified yet easy-

to-use power formulation is also derived to determine the

characteristic impedance for design consideration. The work

features a study on convergence characteristics of the propa-

gation constant and impedance. With the power conservation,

the limiting number of spectral terms in each subregions can

be chosen independently, thereby providing the possibility of
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Fig. 8. Dispersion characteristics of an asymmetrical coupled finline for different slotwidth with d = 0.254 mm, e. = 3.75, al = 3.556 mm, az =
2 mm, t = 0.05 mm, /zl = hz = 3.431 mm, s = 0.2 mm (the letters “e” and “o” denote tbe even mode and the odd mode, respectively). (a)
Normalized propagation constant. (b) Characteristic impedance.
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