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An Efficient Approach to Modeling of Quasi-
Planar Structures Using the Formulation of
Power Conservation in Spectral Domain

Tongging Wang and Ke Wu, Senior Member, IEEE

Abstract—An enhanced spectral domain approach (SDA) is de-
veloped for analysis of complex quasi-planar transmission lines.
The method is based on a combination of spectral domain formu-
lation and power conservation theorem. The relationship between
electric and magnetic fields is established inside dielectric layers
by using the conventional SDA while characteristic equation
related to interface conditions is derived through the power
conservation theorem. Maintaining the inherent advantages of
the SDA, this technique is able to easily handle more complex
quasi-planar structures. Generalized power formulation is also
presented to calculate characteristic impedance. Convergence be-
havior is discussed considering the nature of power conservation.
Various finlines with finite thickness of conductors are analyzed
te demonstrate its applications.

1. INTRODUCTION

ITH ever increasing device density and operating fre-
quency in monolithic and hybrid integrated circuits,
electromagnetic modeling of various quasi-planar transmission
lines is mandatory in accurately predicting circuit performance
and efficiently compressing design cycle. Many analysis meth-
ods usually present a compromise between accuracy and effi-
ciency of numerical calculations, which are no longer suitable
for growing demand of accurate analysis over wide frequency
spectrum up to millimeter-wave range. The development of
generalized and rigorous field-theoretical approaches, which
are able to consider the effect of finite thickness of metal as
well as grooves/pedestals, is therefore pertinent for successful
applications. So far, a number of hybrid-mode techniques
have been presented for analysis of a class of complex quasi-
planar structures, mode-matching method [1], complex power
conservation technique [2], transverse resonance technique [3],
[4], method of lines [5], modified SDA [6], [7], to name a
few examples. It has been recognized that the SDA is the
most popular technique today. This is mainly driven by two
facts. One is that the Green’s function and field quantities are
handled in the spectral domain through efficient and simple
algebraic algorithm. The other is that Galerkin’s technique
makes it possible to obtain accurate results with very low
determinant order of the characteristic equation. This is usually
done through an appropriate choice of basis functions which
Manuscript received January 17, 1994; revised August 18, 1994. This
work was supported by Natural Science and Engineering Research Council
(NSERC) of Canada.
The authors are with the Groupe de Recherches Avancées en Microondes et
en Electronique Spatiale (POLY-GRAMES), Department de Génie Electrique

et de Génie Informatique, Ecole Polytechnique, Montréal H3C 3A7, Canada .
IEEE Log Number 9410339.

satisfy the edge singularity of currents on strips or of fields in
slots. Its early applications and theoretical framework were
reviewed in [8]. Recently, much effort has been made to
extend the SDA to modeling of a class of novel and com-
plicated quasi-planar structures. The mixed spectral domain
approach was presented in [9], [10] for characterization of
suspended planar transmission lines with pedestals and vari-
ous dielectric-loaded ridge waveguides. The CPW electrodes
including conductor thickness have been analyzed in [11] for
the Ti:LiNbO; electrooptic modulator through an extended
spectral-domain approach based on integral equations. This
approach has been also used to determine the characteristics
of planar transmission lines with finite metallization thickness
and lossy substrates containing magnetized ferrites in [12],
[13]. However, these modified versions of the SDA may
suffer from somehow tedious formulations as the complexity
of structures increases. The spectral domain and equivalent
boundary method [14] was proposed to model generalized
coplanar transmission lines embedded in a bianisotropic mul-
tilayered medium. Nevertheless, this approach with simple
analytical process ignored the effect of finite thickness of
conductors.

In this work, a novel enhanced spectral domain approach
is proposed to analyze propagation characteristics of a class
of complex quasi-planar transmission lines. This technique
takes into account the effect of various structural parameters
such as finite thickness of conductors and grooves/pedestals
while maintaining the advantageous nature of the SDA. It
is essentially achieved by an appropriate combination of the
conventional SDA formulation with the power conservation
theorem. In the spectral domain, tangential magnetic field at
boundary apertures of each subregion (homogeneous dielectric
layer) can be expressed in terms of its electric counterpart
through a characteristic matrix. In the space domain, the
boundary conditions at the interfaces are satisfied by imposing
power conservation theorem. Compared to the conventional
and other modified SDA, the proposed technique is more
efficient in view of analytical effort and numerical accuracy.
This is done by avoiding usually lengthy derivation of the
Green’s function matrix for complex structures. In addition,
this technique features an independent choice of the truncated
spectral term in each subregion. The numerical efficiency is,
therefore, highly enhanced in terms of the CPU time and
memory space. This is in particular important in the analysis
of structures containing a large ratio of the lateral width
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among adjacent subregions. A generalized power formulation
is derived for the impedance calculation. Results for finlines
with split-housing and finite thickness of metal strips are
presented to demonstrate performance and usefulness of the
proposed technique.

II. THEORY
A. Characteristic Equation

As shown in Fig. 1(a), a generalized planar structure is
composed of an arbitrary number of strips/fins deposited on
different interfaces of a multilayer dielectric substrate. The
consideration of finite metal thickness as well as housing
grooves or box frames is important for millimeter-wave appli-
cations [2], [15]. Exact electromagnetic characteristics of such
a structure can be symbolically described by the following
space-domain integral equation in the frequency domain

B - // G| - T () ds M

where G stands for the dyadic Green’s function, and E"t, J, are
the tangential components of electric fields and current density
at interfaces involving strips/fins. In the spectral domain,
the convolutional equation (1) is transformed into a simple
algebraic equation, such that

E%t:G'jt‘ (2)

The tilde over these 'quantities indicates the spectral-domain
transform. Obviously, the key to apply this approach is to

obtain the spectral domain Green’s function G for a specific
structure. So far, a variety of modification and improvement
related to the SDA for analysis of planar structures are
mainly on derivation of the Green’s function. With regard
to complex multilayer structures considering finite thickness
of metal, grooves and pedestals, the analytical process gets
much more involved and may become very difficult as the
- number of subregions including dielectrics, conductors and
grooves/pedestals increases. To solve this bottleneck problem,
a novel enhanced SDA is introduced for generalized planar
structures. For a concise demonstration of its principle, perfect
conductors and isotropic/lossless dielectrics are assumed.

The whole structure is divided into a number of rectan-
gular homogeneous subregions which are interconnected to
each other and bounded by, lateral conducting walls. The
electromagnetic fields in the sth subregion in Fig. 1(b) can
be expanded in the spectral domain

(5)- 5 (B
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Fig. 1. (a) Cross section of a generalized planar transmission line, (b) any
subregion of (a), and (c) any interface of (a).

Substituting (3) into Maxwell’s curl equations yields

[ 0 VX} i, e tpz) (@j(y)>

Vx 0 H(y) \n
— hd -~
D A

3

In this matrix equation, A is a column vector consisting of
electric and magnetic fields for the nth spectral component.
Using a coordinate transform (rotation) similar to [6], a
decoupled equation of the y-directed transverse TE and TM
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fields is obtained

T
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with v2 = a? + 32 — w? - € - pug. Note that the relationship
between the original and transformed field components is
characterized by the coordinate transform. Transmission line
solution of (6) leads to two matrix equations which relate
aperture fields to each other at lower and upper boundaries,
such that

(%), = [ 225
—H; ).~ jwpey | —e-B P -o?],
1 E7
'{thw-h) <E>
1 (EX\)’
“ww (), 0
1 2 _a‘ﬁi
(i), = s 2]
1 E;
'{shw-m (E')

1 B\
" h(y B (E+)} . ®

The superscripts (—) and (+) denote the interfaces at y =
+0 and y = h;— 0, respectively. Naturally, the tangential
components of electric field at the top and bottom metallic
ground planes of the shielding box are zero.

In the space domain, the tangential electric and magnetic
fields should satisfy the remaining boundary and continuity
conditions at the interfaces as illustrated in Fig. 1(c). In view
of the interface geometry, these conditions can separately be
stated in two different parts

= k I = 2
ESN (B
( ﬁt_ ) = Z ( ﬁj‘ on apertures

and

n

i=1
- k I+1 P
i) =2 (F)
) = = on conductors )
i) =% (&

in which the subscript “¢” refers to the -z plane, and “k” is the
notation of the region connected to an /-furcated waveguide
junction. On the basis of the complementary property between
E} and ft, the power conservation in the transverse direction
should hold, which is determined by the following equation:

/ (B x H
Gy

I
)kda;:Z/ (Ef x HF Y dz  (10)
i=1 Y&
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Invoking Parseval theorem, (10) is transformed into the
spectral domain such that

1 *f’ By H7
ax E—'H‘_* "

Sy LS (B
T2 2 \EFE )

Substituting (7) and (8) into (11), a set of linear homo-
geneous equations is derived. Propagation constant § can
be obtained simply through the application of Galerkin’s
technique. In numerical calculations, the infinite sum of (11) in
the spectral domain is truncated to a finite number. The spectral
terms of both sides in (11) may be chosen independently as
long as the power conservation is guaranteed. As will be shown
in next section, smaller number of spectral terms in subregion
with small lateral widths is required to achieve accurate results.
This process greatly enhances the numerical efficiency in terms
of the CPU time and memory space.

B. Characteristic Impedance

The characteristic impedance is a crucial parameter in
computer-aided design of passive and active circuits. In the
following, various finlines are considered as examples of
analysis. Note that there is no unique definition of impedance
in the non-TEM structures in which path integrals of modal
fields are arbitrary. On the basis of practical consideration,
the voltage-power definition seems to be more appropriate
for slot-like structures. Considering the finite thickness of
conductors, the two different slot voltages (V4 and V) may
be obtained which depend on the upper and lower boundary
apertures (A and B integral paths in Fig. 1(b), for example).
As expected at higher frequencies, the difference between
two voltages will be more visible as the thickness increases.
Therefore, the average voltage may be defined such that
Vo = (1/h;) - fohl ([, Es - dz) - dy. This can, in practice,
be simplified by assuming a linear variation of V' along the
y-direction. As a result, V is equal to (V4 + Vp)/2.

The total power P is determined by adding up contributions
P; from all partitioned subregions. In the spectral domain, an
explicit formulation of F; can be derived in terms of the field
components in the u-v coordinate system

I3

+oo 7 P,
1 a
P = Z (-ﬁ__ w_azﬁ i) | p (12)
2a; L=, \wpo 77 wio /), \p
B

P
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dp

Fig. 2. Structure and dimensions of the asymmetrical finline.

1
P=—
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In these equations, Ej; .~ are known field quantities defined
in the ith subregion, which are directly related to the original
fields in the z-z coordinate system through a simple rotation
[6]. Obviously, a simpie and easy-to-handle formulation is
proposed for power calculation that is usually lengthy. This
is in particular meaningful in the case of complex multilayer
structures considering finite thickness of metals, supporting
grooves and pedestals.

(E;.E;+E;-E,;+

C. Numerical Convergence

Prior to showing examples of this new algorithm, it is useful
to examine inherent behavior of numerical convergence. The
Galerkin’s technique requires that unknown tangential electric

fields at boundary apertures of the ith subregion be expanded

in terms of a complete set of basis functions such that
>

i Mg - fo(2)
lgx _ g=1

> ¢ gal2)
s=1

where 7, and ¢, are the weighted coefficients to be determined.
It is known that a good convergence towards exact results
can only be achieved by choosing appropriate basis func-
tions which correctly describe the field singularity at relevant
conductor edges. Due to the difference of convergence rate
between the expanded basis functions and their Fourier series,
the basis functions satisfying the edge conditions should be
considered to yield efficient calculation with a low order
of matrix equation. In this work, a set of sinusoidal basis
functions modified by an edge condition term [16] is used
in the analysis. The Fourier transform of the basis functions
for the symmetrical case, to name an example, is given by
TWw

fo= (-0 22 o (@ 5+ (- 1))
+ Jo (04% —(g- 1)“)]

%

(14)
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TABLE 1
COMPARISON OF CALCULATED AND MEASURED FREQUENCY-DEPENDENT RESULTS
FOR GUIDED WAVELENGTH OF THE ASYMMETRICAL FINLINE. STRUCTURAL
PARAMETERS: w = 1.25 mm, d = 0.254 mm, &, = 9.9,a; = 4.42 .
mm, as = 6.42 mm, ¢ = 0 mm, h; = 5.41 mm, he = 5.16mm

Ay calculated

Freg. (GHz) A, measured -
[15] 9] This work

17.6 12.50 12.42 12.37 12.37
18.0 12.09 12.07 12.02 12.02
184 11.75 11.73 11.68 11.68
18.8 - 11.46 11.42 11.37 11.37
19.2 11.18 11.17 11.07 11.07
19.6 10.94 10.83 10.78 10.78
20.0 10.62 10.56 10.51 10.51

o B oo 4

gs =(=1) 1 Jola 5 + s

~ T (a-;l—) —sw)] (15)

with Jy being the zero-order Bessel function of the first kind.
The index n denoting the spectral terms is ignored in (15) for
simplicity. The choice of the limiting spectral term for the
basis functions mainly depends on the convergence nature of
fq- Tt is easily found that the asymptotic behavior of f, is
in accordance with %% as n — oco. This suggests that the
relative convergence criterion such that N /N; = C-ax/a; as
already discussed in [15] should be fulfilled for any adjoining
subregions in which N and N, are the limiting spectral
terms for the basis functions defined in the subregions ay
and a;, respectively. The coefficient C is then determined
by the relative field intensity regarding the relevant adjoining
subregions, thereby depending on the structural parameters as
well as the spectral terms. The value of C' fails usually into the
range of 0.2-5.0. C is larger than 1 as ay/a; is smaller than
1, for example. In general, the convergence behavior of the
propagation constant and characteristic impedance is different
with respect to the spectral terms for a given number of the
basis functions. This will be discussed subsequently.

III. NUMERICAL EXAMPLES

In the following, asymmetrical finlines are analyzed as
examples to demonstrate performance and applications of the
proposed approach. The basis functions used throughout the
paper are truncated at ¢ = 3 and s = 2, which turn out to be
sufficient. To begin with, frequency-dependent characteristics
of the finline depicted in Fig. 2 are calculated and shown in
Table 1. Our results are in excellent agreement with [9], [15],
thereby validating the proposed approach. Fig. 3 shows dis-
persion curves and characteristic impedance of the dominant
mode for a bilateral finline with three different thickness of
lines. The results for the zero thickness agree well with [16].
The computer program is implemented in a PC486 with 50
MHz clock speed. The CPU time is about 2 seconds per
frequency sample.

The effect of the modal voltages (V4, Vg, Vp) defined at dif-
ferent position across the slot on the characteristic impedance
is illustrated in Fig. 4. The results indicate that the relative
deviation of characteristic impedance increases linearly with
the thickness of conductors. As expected, such an effect is
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Fig. 3. Dispersion characteristics of the normalized propagation constant and characteristic impedance versus different finite thickness of metallization for a

bilateral finline with parameters: w = 0.3 mm, d = 0.125 mm, &, =3.75, ¢ = 3.556 mm, h; +t = hs + t = 3.4935 mm.
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Fig. 4. - Relative deviation of the characteristic impedance as a function of
the metallization thickness for different definition of voltage in terms of field
path integral in the finline (see Fig. 2). w = 0.2 mm, d = 0.254 mm, &, =
3.75, a1 = 3.556 mm, hy = ho +t = 3.431 mm.

more pronounced at higher frequencies. Obviously, the differ-
ence of modal voltages is attributed to the integral path over
different intensity of electric field across the slot with finite
thickness. On the other hand, the difference in convergence
behavior between the propagation constant and characteristic
impedance is exhibited in Fig. 5 for the asymmetrical finline
(see Fig. 2). The number of spectral terms in subregions other
than “¢” is set to be 600, while the reference values of 3y and
Zy is obtained as ny = 600. It is observed that the convergence
rate of By is more rapid as a function of the spectral term
than that of Z,. This indicates that power spectrum are widely

0.25 4 -
Q —-o- for B |
N 0.20 - ‘\:, o | :
o “‘ 5\
: - 0.25 5
X< 0.15 ; I
< l‘\» | é\‘
= & :
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CN “..\‘ - 8
& 0.05- E §
- L 0.05
0.00+ s
T ' I | I | I
0 2 ’ 6
|092 (n2/5)

Fig. 5. Convergence behavior of the propagation constant and characteristic
impedance versus the limiting number of spectral terms no in Fig. 2 with
w = 0.4 mm, d = 0.254 mm, &, = 3.75, ay = 3.556 mm, as =7.112 mm,
t =0.1mm, hy = hg +¢t = 3431mm, f = 35 GHz.

spread over a large range of terms. The slow convergence of
power calculation compared to the dispersion analysis may
be explained by involving the “double” field singularity such
as I, x H,. Nevertheless, Fig. 5 suggests that sufficiently
accurate results are obtained for the given structure as ng
exceeds 40.

Fig. 6 presents dispersion characteristics including the first
higher-order mode and characteristic impedance by consid-
ering the effect of finite metallization thickness. It is shown
that the influence of the finite thickness is significant on the
characteristic impedance over the frequency band of interest.
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Fig. 6. Dispersion characteristics for different thickness of metallization of
the asymmetrical finline (see Fig. 2) with w = 0.4 mm, d = 0.254 mm, &, =
375, a1 = 3.556 mm, a2 = 7.112 mm, h1 = hs +t = 3.431 mm (HM
refers to the first higher-order mode). (a) Normalized propagation constant.
(b) Characteristic impedance,

Increasing the metallization thickness decreases the propaga-
tion constant and characteristic impedance of the dominant
mode. However, the cutoff frequency of the first higher-
order mode in the case of ¢ = 100 pum moves slightly
upwards compared to the case of ¢ = 50 pum. This may
stem from an opposite field perturbation in y-direction by the
separation of housing and concerned metallization thickness.
The dispersion curves and characteristic impedance are plotted
in Fig. 7 for different housing separation (or contrast of the
‘shielding). In this case, the results considering the effect of
finite thickness display similar dispersion characteristics as in
[15] for the situation of vanishing thickness. The increase in
the housing separation pulls downwards the cutoff frequency
of the first higher-order mode for the given structure. Shown
in Fig. 8 are the dispersion and characteristic impedance
of the even- and odd-modes against different slot widths
for a coupled asymmetrical finline with finite thickness. Of
course, In contrast to the odd-mode, nearly dispersionless
characteristics are observed for the even-mode (quasi-TEM
mode) over the frequency of interest.
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Fig. 7. Frequency-dependent characteristics for different dimension ratio
az /a1 described in the asymmetrical finline (see Fig. 2) with w = 0.2 mm,
d =0.254 mm, &, = 3.75, a1 = 3.556 mm, t = 0.05 mm, hy = ho +t =
3.431 mm. (HM refers to the first higher-order mode). (a) Normalized
propagation constant. (b) Characteristic impedance.

IV. CONCLUSION

A novel strategy of using the spectral-domain approach
called the enhanced SDA is proposed for accurate theoretical
characterization of generalized planar muitilayer and multicon-
ductor structures. The approach is formulated by combining
the conventional SDA in homogeneous zones and the power
conservation theorem at interfaces of different zones. The
principal features of the proposed approach are to simplify
the derivation of Green’s function and extend the inherent ad-
vantages of the existing SDA into handling practical complex
structures considering finite metallization thickness, housing
grooves/separation, and pedestals. The algorithm is easily
implemented on a personal computer. A unified yet easy-
to-use power formulation is also derived to determine the
characteristic impedance for design consideration. The work
features a study on convergence characteristics of the propa-
gation constant and impedance. With the power conservation,
the limiting number of spectral terms in each subregions can
be chosen independently, thereby providing the possibility of
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Fig. 8. Dispersion characteristics of an asymmetrical coupled finline for different slotwidth with d = 0.254 mm, £, = 3.75, a1 = 3.556 mm, ag
2 mm, t = 0.05 mm, hy = hy = 3431 mm, s = 0.2 mm (the letters

Normalized propagation constant. (b) Characteristic impedance.

reducing drastically calculation expense in terms of memory
size and CPU time. Applications of the validated method
are demonstrated through calculation and analysis of various
asymmetrical finlines. It is believed that the proposed approach
can find applications in CAD of a wide range of quasi-planar
circuits. : .

7Rt

€

TRt}

and “0” denote the even mode and the odd mode, respectively). (a)
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